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Abstract—Human video generation is a dynamic and rapidly
evolving task that aims to synthesize 2D human body video
sequences with generative models given control conditions such
as text, audio, and pose. With the potential for wide-ranging
applications in film, gaming, and virtual communication, the
ability to generate natural and realistic human video is critical.
Recent advancements in generative models have laid a solid
foundation for the growing interest in this area. Despite the
significant progress, the task of human video generation remains
challenging due to the consistency of characters, the complexity
of human motion, and difficulties in their relationship with the
environment. This survey provides a comprehensive review of the
current state of human video generation, marking, to the best of
our knowledge, the first extensive literature review in this domain.
We start with an introduction to the fundamentals of human
video generation and the evolution of generative models that have
facilitated the field’s growth. We then examine the main methods
employed for three key sub-tasks within human video generation:
text-driven, audio-driven, and pose-driven motion generation.
These areas are explored concerning the conditions that guide the
generation process. Furthermore, we offer a collection of the most
commonly utilized datasets and the evaluation metrics that are
crucial in assessing the quality and realism of generated videos.
The survey concludes with a discussion of the current challenges
in the field and suggests possible directions for future research.
The goal of this survey is to offer the research community a clear
and holistic view of the advancements in human video generation,
highlighting the milestones achieved and the challenges that lie
ahead.

Index Terms—Human video generation, Digital human, Virtual
avatar, Diffusion model, Generative methods, Survey.

I. INTRODUCTION

UMAN video generation task aims to synthesize natu-

ral and realistic 2D human video sequences with genera-
tive models given control conditions such as text [1]], [2], audio
[3[]]-16] and pose [7], [8]]. These generated video sequences fea-
ture full-body or half-body human figures, including detailed
motion representations of body parts and faces. Recently, this
field has gained significant attention due to a wide range
of potential applications, including film production, video
games, AR/VR, human-robot interaction, digital humans, and
accessible human-machine interaction.

Recently, human video generation has achieved rapid
progress benefiting from advancements in generation methods,
i.e., Variational Autoencoders (VAE) 9], Generative Adversar-
ial Networks (GAN) [10], and Diffusion Models [11]. How-
ever, studying such a video synthesis problem is known to be
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challenging for the following reasons. Firstly, the appearance
consistency of humans along the time sequence is a significant
obstacle in this task. Secondly, the deformation of the human
body that people are sensitive to in a synthesized video is hard
to avoid, i.e., finger abnormalities, as shown in Fig. E} Thirdly,
the complexity of human motion video extends beyond just
modeling the face; it also involves accurately modeling body
motion and maintaining background consistency and harmony
with body parts. Additionally, the demand for human motion
generation often includes a context as the condition, such
as text description, audio signals, pose sequences, ensuring
temporal alignment with these conditional signals is crucial
for producing a coherent and realistic human video.

In response to the rapid development and emerging chal-
lenges of human video generation, we present a comprehensive
survey of this field to help the community keep track of its
progress.

In summary, the main contributions of this survey are
fourfold:

o« We have carefully specified the boundaries of human
video generation, offering a comprehensive analysis of
recent advancements within this domain. We have catego-
rized these advancements into three primary groups based
on the modality driving the generation process: text-
driven, audio-driven, and pose-driven. To our knowledge,
this is the first survey that provides a systematic and
focused examination of this particular field.

o We thoroughly examine the challenges and hurdles in
human video generation through massive related methods
and an extensive inventory of relevant datasets, chal-
lenges, evaluation metrics, and commercial projects. This
paper guides readers in selecting suitable baselines or
solutions for their unique applications. Additionally, our
findings offer valuable insights into enhancing current
methodologies.

o Drawing from our detailed literature review and in-depth
analysis, we have identified several promising directions
for future development in human motion generation.

o We also provide a continuously updated GitHub repos-
itory that includes the latest developments in the field,
as well as links to awesome works and datasets. We aim
to provide the research community the most cutting-edge
information and provide easy access to important research
works, datasets, and applications. For more details, please
visit our repository link

The survey is organized as follows. In Section [T} we discuss
the comparison with the previous survey. Section covers
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Fig. 1: An overview of typical Multi-Condition human video generation methods and challenges.

the fundamentals of the task, including the commonly used
datasets and the evaluation metrics. In Sections [VIVIl we
summarize existing approaches for human motion generation
based on different conditional signals, respectively, including
text, audio, and pose. Finally, we draw conclusions and provide
insights for this field in Section

II. COMPARISONS WITH PREVIOUS SURVEYS

To the best of our knowledge, this survey is the first to focus
directly on the human video generation task. Although several
surveys have been conducted on video or motion generation,
the differences between our survey and existing ones are
mainly in the following three aspects.

1) Different Scope. This survey focuses on human video
generation, which is a 2D video generation task that uses a
generative model to input text, audio, posture, or other modal
data and uses full-body or half-body characters, including
hands and faces as generated subjects. Compared with the
general video generation task that many previous surveys [12]—
have focused on, this paper details the unique chal-
lenges and developments of human generation. Additionally,
surveys [16], concentrated solely on the talking head task,
which focuses only on the generation of the head. However,
the scope of this survey pays additional attention to hands,
thus extending to the generation of half-body and full-body.
Furthermore, the work by Zhu et al. explicitly addresses
motion generation, emphasizing human poses rather than video
generation.

2) Video Perspective. This paper especially discusses hu-
man generation challenges from a video perspective. In con-
trast, previous human generation surveys [19], focused
on the problems in image generation.

3) New Insight. To explore and solve the special challenges
in human video generation and improve the generation quality,
this paper provides a comprehensive analysis of the human
video generation task through detailed methods and challenge
discussion, as well as summarizes extra relevant datasets,
evaluation metrics, and existing commercial projects. Our goal
is to offer readers a clear and concise insight into the factors
contributing to a successful human video generation and to
answer the question, “What Makes a Good Human Video
Generation?”

III. DATASET AND MATRIX
A. Metrics

Comparing different methods in this field requires appro-
priate and comprehensive evaluation metrics. However, evalu-
ating generated human videos presents significant challenges
due to factors such as the one-to-many mapping nature, the
subjectivity inherent in human evaluations, and the complexity
of high-level conditional signals. To address these challenges,
this section provides an overview of the most commonly
used evaluation metrics, highlighting their advantages and
limitations. The details of the metrics are shown in Table. [l

We summarize that the evaluation of generated human
videos in this field covers several critical aspects: Image
Quality, Video Quality, Consistency, Diversity, Aesthetics, and



Category Metric

Description

L1 Error

Measures the absolute pixel-level difference between predicted and
ground truth frames.

Peak Signal-to-Noise Ratio (PSNR) [21]

Quantifies similarity between generated and real images in dB.

. Structural Similarity Index (SSIM) [22]
Image Quality

Evaluate structural similarity considering luminance, contrast, and
structure.

Learned Perceptual Image Patch Similarity

(LPIPS) [23]

A deep learning-based metric evaluating visual similarity. Lower
LPIPS indicates higher similarity.

Fréchet Inception Distance (FID) [24]

Compares the feature distribution between generated and real
samples. Lower FID indicates better quality.

Kernel Video Distance (KVD) [25]

Measures the distribution distance between generated and real video
sequences.

Fréchet Video Distance (FVD) [25]

Measures the distance between the distributions of generated and
real videos.

Average Content Distance (ACD) [26]

Assesses action sequence consistency in generated videos, especially
for gesture generation tasks.

Video Quality Warping Error (WE) [27]

Obtain the optical flow of each two frames, then calculate the
pixel-wise differences between the warped image and the predicted
image.

Fréchet Gesture Distance (FGD) [28]

Measure the distribution gap between real and generated gestures in
the feature space.

Fréchet Template Distance (FTD) [28]

similar to the FGD , measuring the distribution similarity between
the generated ones and the real ones in the feature space

Fréchet Inception Distance for Videos
(FID-VID) [29]

Measures the distribution distance between generated and real video
frames, incorporating both spatial and temporal features. Lower
FID-VID indicates better quality.

Beat Consistency (BC)

Assesses temporal consistency in videos content with audio.

CLIP-I score |1

Measures the face structural similarity between the reference image
and the generated video.

Consistenc . Evaluate the motion-music correlation in terms of the similarit

Y Beat Alignment Score (BAS) [30]) between the kinematic beats and music beats. Y

. Assesses temporal consistency in videos by calculating cosine
Frame Consistency (FC) [31) similarity between feature vectors of consecutive frames.
. Measures the diversity and clarity of generated images and
Di it Inception Score (IS) [32] sometimes used for video quality.
iversi
y Diversity (Div) [33] Calculates feature distance between generated gestures on average.

Aesthetics Dover Score [34] Measures the overall quality of the generated video from both

technical and aesthetic perspectives

Percentage of Correct Keypoints (PCK) [35]

Measures the proportion of keypoints that are correctly localized
within a specified threshold distance from the ground truth keypoints.

Pose Accuracy Average Keypoint Distance (AKD) [36]

Evaluates the accuracy of human keypoints in generated videos by
comparing distances to real keypoints.

Missing Keypoint Rate (MKR) [37]

Measures the proportion of missed keypoints during detection or
generation.

TABLE I: Commonly Used Evaluation Metrics for Human Video Generation.

Action Accuracy. Each of these categories is essential for
a comprehensive assessment of the performance of different
methods.

Image Quality focuses on the visual fidelity of individual
frames, evaluating pixel-level differences, structural similarity,
and perceptual similarity to ensure frames closely match real
ones.

Video Quality extends this evaluation to the temporal do-
main, assessing the coherence and realism of frame sequences
to capture the dynamic nature of real-world actions.

Temporal Consistency is to ensure that the generated
content maintains a natural flow and synchronization over
time, which is crucial for applications involving synchronized
audio and video.

Diversity is to evaluate the variety and richness of the
generated content, ensuring the model can produce a wide
range of realistic videos.

Action Accuracy is to assess the precision of human actions
and movements within the videos, which is vital for appli-
cations where the correctness of these actions is paramount.
Together, these metrics provide a comprehensive framework
for evaluating the performance and quality of methods in
human video generation.

B. Datasets

Recently, various datasets have been utilized in the research
on human video generation, encompassing a diverse array
of scenes, actions, and backgrounds. The primary datasets
include videos of dance, fashion, and daily activities, sourced
from widely accessible platforms such as TikTok and YouTube.
These datasets provide diverse data to support the training and
evaluation of existing methods. The details of the datasets are
shown in Table. [
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Fig. 2: Some examples of human video datasets and annotation formats.

Category Dataset Name Year Data Size Modality Source
ASTS [38] 2005 90 videos Video/Mask Link
UCF-101 || 2012 ~13k videos Video Link
human3.6m || 2014 3.6M frames Video/2D-Pose Link:
. NTU RGB+D [41 2016 ~114k videos Video/3D-pose/Depth Link
Human Action TaiChi [36] - 2019 3k videos Video Link
HAR Iﬁl 2023 ~1k videos Video Link
3D People Synthetic 2023 ~22k videos Video/Masks/Pose/Depth/Mesh/OF Link
MSP-Avatar 2023 74 videos Video/Audio/Motion Link
EverybodyDance [45] 2019 105 videos Video/2D-Pose Link
AIST++ || 2021 10k videos Video/Audio/3D-Pose Link:
Human Dance TikTok [46] 2021 340 videos Video/Depth/Mesh Link:
Dancelt | 2021 154 videos Video/Audio/2D-Pose Link:
TikTok-v4 | 2023 350 videos Video/2D-Pose Link
Disco [48] 2024 700k frames Video/2D-Pose/Mask Link
Music Performance Sub-URMP [49 2017 ~81 frames Video/Audio Link
URMP [50: 2018 44 videos Video/Musical Score/Audio Link
DeepFashion [51] 2016 ~800k frames Video/Mask/Text Link|
Human Fashion Fashion [52] 2019 600 videos Video Link
Fashion-Text2Video 2023 600 videos Video/Text Link
Human Art HumanArt M 2023 50k frames Video/Text/2D-Pose Link|
MS-ASL [55] 2018 25k videos Video/Text Link|
PHOENIX 14T || 2018 ~68K frames Video/Text Link
How2sign | 2021 ~35K frames Video/Text/2D-Pose/Depth Link
Bold [58] 2023 ~10k videos Video//Text/Audio/3D-Pose Link:
Body Language MCCS-2023 |.@ . [60) 2023 ~ 4K videos Video/2D-Pose/3D-Pose/Text/Audio Link
Speech2gesture || 2019 60k Video/Audio/2D-Pose Link
Pats 2020 84k videos Videos/Text/Audio/2D-Pose Link
TED gesture F 2021 ~2k videos Video/Text/2D-Pose/Audio Link:
Ted-talk [64] 2021 ~3k videos Video Link:

TABLE II: Dataset Information for human video generation.

For video generation tasks, effectively representing pose [68]], StackPose [69].

and motion information in videos is crucial. In this section, 3D Pose adds depth to 2D poses, providing 3D coordinates
we will introduce common pose annotation formats, their (x, y, z) for detailed human pose information. Common meth-
characteristics, and commonly used methods. ods: ExPose [70], Alphapose [71], MotionBERT [72].

2D Pose uses keypoints to form a skeletal graph for rec- 3D Mesh uses polygonal meshes to represent human surface

ognizing and analyzing human poses in 2D. Data is typically shapes for realistic models. Data formats often include vertices
formatted as a set of (x, y) coordinates for each joint. Common and faces of the mesh. Common methods: SMPL [73]], SMPL-

methods: OpenPose [[65]], DwPose [66], PoseNet [67], HRNet X [[74].
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Fig. 3: An overview of text to human video generation approaches.

Optical Flow represents motion vectors of pixels to describe
motion direction and speed in videos. Data is typically stored
as a 2D field of vectors. Common methods: MMFlow [75],
FlowNet [76], RAFT [77].

Depth creates a depth map showing the distance of each
pixel from the camera, useful for 3D reconstruction and AR.
Data is usually in the form of depth images where each
pixel value corresponds to the distance from the camera.
Common methods: vid2depth [78]], monodepth2 [79], Depth
Anything [80].

Dense Pose maps 3D body surface coordinates to each pixel
for detailed pose information. Data includes UV coordinates
for each pixel mapped to a 3D body model. Common methods:
DensePose [81]].

IV. TEXT TO HUMAN VIDEO GENERATION

In the following sections [VHVIl we will focus on the meth-
ods of human video generation based on different condition
signals. Firstly, we will introduce the text-driven human video
generation methods.

Text can describe specific appearances, scenes, and styles,
providing a rich source of information for generative models
to control the generated content. Recent generative methods
such as stable diffusion [82] and Sora [14] have shown that
using text as input to generate images and videos has achieved
impressive results.

However, different from the general video generation tasks
which focus on the coherence of the video, human video
generation requires precise control over both the appearance
and movement of the human body. Existing methods approach
this challenge from two main angles: using text to maintain
appearance and extracting semantic information from text to
control poses. The overview of existing research in text-driven
human video generation is shown in Fig. 3]

A. Text-driven Human Appearance Control

To control the appearance of the human body in the gen-
erated video, there are two approaches: one is to directly
provide reference images, and the other is to use input text
descriptions to control the generated human appearance. Here,
we discuss the text-driven human appearance control methods.
To ensure the consistency of appearance in generated videos
with the textual descriptions while preserving identity details
during frames, ID-Animator [1]] leverages a pre-trained text-
to-video (T2V) model with a lightweight face adapter to

encode identity-relevant embeddings. Text descriptions guide
the generation of human videos and control the character’s
appearance in the video. Similarly, [2]] uses text descriptions
to provide semantic information about the content of the
characters, ensuring the generated videos align with the textual
descriptions.

B. Text-driven Human Motion Control

Existing methods for precisely controlling the motion of
the human body in generated videos typically follow two
approaches:

1) One approach follows a two-stage pipeline. It first
generates corresponding poses based on the semantics of the
input text according to the task and then uses these generated
poses to guide the motion. More details about the pose-guided
generation methods in the second stage can be referred in
Section [VI] For this type of task, it is necessary to establish
a connection between text and poses to control motion in a
video. HMTV [83] uses descriptive text to generate initial 3D
human motion and control camera angles, ensuring dynamic
and realistic video outputs. The text guides the actions and
camera movements in the video, providing precise control over
the character’s movements and the viewer’s perspective. For
the Sign Language Production task, SignSynth [84] uses a
Gloss2Pose network to generate sign language poses and a
GAN to create high-quality sign language videos. Similarly,
H-DNA [85] translates spoken sentences into sign language
videos by first generating sign gesture poses and then using
a GAN to produce the final video. In SignLLM [_86], text
descriptions are converted into gloss (an intermediate sign
language representation) and then mapped to poses, which
are rendered into Sign Language videos. Here, the semantics
of the text are captured to align with the described human
pose. In Cued Speech [87], [88|] Generation task, [89] first
leveraged a Large Language Model (LLM) to convert text
into a descriptive gloss and then used the gloss to generate
a fine-grained pose.

2) The other approach directly uses text as a prompt to guide
the generation of video actions. For instance, Text2Performer
53] involves the motion text and a motion encoder. motion
text describes the movement, such as “She is swinging to
the right.” The model implicitly models these descriptions
by separately representing appearance and motion, thereby
generating high-quality videos with consistent appearance and
actions.
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Fig. 4: An overview of audio to human video generation approaches. Example images adapted from [4], [90], [91].

Condition Method Venue Model Motion Feature Dataset
speech2gesture [61]] CVPR 2019 GAN 2D pose Speech2Gesture [61]]
Speech2video [92] ACCV 2020 LSTM 3D pose Self-collection

Qian al. [3] ICCV 2021 VAE 2D pose Speech2Gesture [61]]
Speech ANGIE [62] NeurIPS 2022 VQ-VAE MRAA PATS [62]
DR2 [93]] WACYV 2024 VAE 3D pose Speech2Gesture [61]], Self-collection
DiffTED [94] CVPR 2024 Diffusion 2D TPS TED-talks [64]
He al. [4] CVPR 2024 Diffusion 2D TPS, optical flow PATS [62]
Islam al. [6] RAAICON 2019 GAN 2D pose Self-collection
Dancelt [47] TIP 2021 GAN 2D pose Self-collection
Music Dabfusion [90] ArXiv 2024 Diffusion Optical flow AIST++ [30]
Zhu al. [5] ICPR 2021 CNN keypoint Sub-URMP [49]
Music2Play [91]] CAC 2023 LSTM 2D pose, optical flow URMP [50]

TABLE HI: Summary of works related to audio to human video generation.

V. AuDIO TO HUMAN VIDEO GENERATION

In addition to textual descriptions, human video generation
from audio signals has also been explored in this survey. In this
section, we mainly discuss two main subtasks: speech-driven
human video and music-driven human video. Speech-driven
human video generation aims to generate a sequence of human
gestures based on input speech audio, which requires the
generated human motion to be harmonious with the audio,
not only in terms of high-level semantics but also emotion and
rhythm. While music-driven human video generation focuses
on synthesizing the video of a person dancing or playing
a certain instrument guided by a given music clip, which
especially lies in the low-level beat alignment. In this scenario,
the direct conversion of audio into video poses a complex
challenge. Previous research has often followed a two-stage
pipeline, including audio-to-motion and motion-to-video, as
illustrated in Fig. [}

A. Speech-driven Human Video Generation

Many existing works have concentrated on generating talk-
ing videos, primarily focusing on the head region [95]], [96]. In
contrast, our review focuses on works that include body ges-
tures [3[], [4]], [61]], [92]-[94]. To the best of our knowledge, all
of these works fall under the field of co-speech gesture video
generation. Given the importance of motion representation for
the final video, we review these works from the perspective
of motion generation.

In speech-driven human video generation, some methods
[61], [92], [93] synthesize talking videos from sequences of
2D skeletons [3]], [61] or 3D models [92], [93], with the
rendering process being separate from the generation of the

gestures. However, hand-crafted structural human priors like
2D/3D skeletons completely discard appearance information
around key points, making precise motion control and video
rendering highly challenging. Additionally, the pre-training of
pose estimators relies on hand-crafted annotations, leading to
error accumulation and often resulting in jitters. To alleviate
these issues, ANGIE [62]] utilizes an unsupervised feature,
MRAA [64], to model body motion. A VQ-VAE [97] is then
used to quantize common patterns, followed by a GPT-like
network that predicts discrete motion patterns to generate
gesture videos. However, MRAA, being a coarse modeling of
motion, is linear and fails to represent complex-shaped regions,
limiting the quality of gesture videos generated by ANGIE.
Additionally, directly associating covariance with speech is
inappropriate. To address these challenges, DiffTED and He
al. propose decoupling motion from gesture videos while
preserving critical appearance information of body regions.
They use the learned 2D keypoints of the Thin-plate Spline
(TPS) motion model [37] as targets for generation and leverage
the TPS motion model to render the keypoints into images.
Additionally, motivated by the success of recent diffusion
models [11]], DiffTED and He al. propose a diffusion-based
approach to generate diverse gesture sequences.

B. Music-driven Human Video Generation

Music-driven human video generation uniquely intersects
motion synthesis and music interpretation, aiming to create
human motions synchronized with input music beat. This
extends beyond general motion synthesis, as beat-aligned
motions are complex to animate [90]. We have explored two
sub-tasks, i.e., music-to-dance and music-to-performance.



To achieve beat sensing motion generation, some music-
to-dance video generation works [6], [90] explicitly detect
beat from music audio, or design a matching phase learns the
relationship between these two different modalities [47]]. Islam
al. [6] perform beat detection and repeated pattern extraction
from input music first and then generate mathematical models
of a person dancing and convert them into realistic images
of the target person. Dabfusion [90] applies a beat extractor
to explicitly disentangle beat features from music. These beat
features are then used to guide the production of latent optical
flows, followed by backward flow estimation to generate the
output video. Differently, Dancelt [47] learns the relationship
between these two different modalities at the first matching
phase, then retrieves a sequence of pose fragments for each
music audio and performs spatial-temporal alignment at the
generation phase.

For music-to-performance video generation, it is challeng-
ing to generate high-dimensional temporal consistent videos
from low-dimensional audio modality. Zhu al. [S] propose a
multi-staged framework that first generates the coarse video
from given audio and then makes refinements by integrating
intra-frame structure information from predicted keypoints and
temporal information for final performance video generation.
Music2Play [91] gains a sequence of poses in an auto-
regressive way and, estimates the dense flow field information
from the pair of poses, finally fuses multi-modal information
(audio, flow, and image) to synthesize the output frame.

VI. POSE TO HUMAN VIDEO GENERATION

As illustrated in Fig. 5] existing research in pose-driven hu-
man video generation has often followed a common pipeline.
In the task of pose-driven human video generation, various
pose types, including skeleton pose, dense pose, depth, mesh,
and optical flow (as shown in Tab. , serve as common
guiding modalities along with the more traditional text and
speech inputs. According to the number of conditional poses,
we can divide the existing pose guided human video generation
methods into two categories. The first category uses only a
single type of pose, which is recorded as single-condition
pose-guided methods. The second category uses different
types of pose signals, which are referred to as multi-condition
poses-guided methods.

A. Single-condition Pose-guided Methods

Among all types of conditional signals, the most common
are skeleton pose and dense pose. Early pose-guided human
video generation methods [26], [52], [75], [99]-[106] based
on GANs primarily utilized conditional adversarial networks
such as CGAN [107], pix2pix [108]], and pix2pixHD [109].
These methods extracted skeleton poses using OpenPose [|63]]
or StackPose [69] methods, or extracted dense pose using
the DensePose method, and used the extracted skeleton pose
or dense pose as conditional signal into CGAN or pix2pix
generation models.

With the development of conditional generation models,
current methods [8], [29], [110]-[112] mostly utilize stable
diffusion (SD) [113]] or Stable Video Diffusion (SVD) [114],
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Fig. 5: An overview of pose-guided human video generation
approaches. Examples come from [98]] and [§].

[115] as the backbone for video generation models. For in-
stance, the MagicPose [29]] injects pose features into the diffu-
sion model by ControlNet [[116]]. In contrast to directly utiliz-
ing ControlNet, methods such as MotionFollower [110], Mim-
icMotion [111], AnimateAnyone [, and UniAnimate [112]]
extract skeleton poses from targvideo frames using Dw-
Pose [117] or OpenPose [|65]]. To align the extracted skeleton
poses with the noise in the latent space and effectively
leverage pose guidance during denoising processing, they
design lightweight neural networks (composed of only a few
convolutional layers) as pose guider.

Unlike the above skeleton pose-guided video generation
diffusion models, methods like DreamPose [[118] and Mag-
icAnimate [[119] utilize the DensePose [81] method to extract
dense pose and directly concatenate dense pose and noise into
the denoising UNet by ControlNet. Different from these types
of 2D poses (skeleton pose and dense pose), Human4DiT [120]]
extracts corresponding 3D mesh maps using SMPL [121].
Inspired by the work of Sora and other variants [[14]], [[122],
Human4DiT [120] regards Diffusion Transformer as the back-
bone for video generation.

B. Multi-condition Poses-guided Methods

In addition to the single conditional pose-based human
video generation, the recent success of SD [113] and
SVD [114], [115]] has laid the foundation for multi-conditional
pose-guided human video generation. Most existing pose-
guided methods use either skeleton pose or dense pose as
the conditional input. However, these single-condition pose-
guided methods often exhibit poor generalization to complex
backgrounds and suffer from occlusion issues between differ-
ent bodies and parts of the same individual.

To address the poor generalization considering the com-
plex backgrounds, DISCO [48]] presents an innovative model
architecture featuring disentangled control over background
and skeleton pose, thereby improving the compositionality of
dance generation. This architecture enables the integration of
both seen and novel subjects, backgrounds, and poses from di-
verse sources. Follow-Your-Pose v2 [138] integrates an optical
flow guide with other condition guiders to enhance background



Model Method Venue Condition Extractor Dataset
Cai et al. [101] ECCV 2018 SK SP [69] Human3.6M [40]
Yang et al. [99] ECCV 2018 SK OP [65] 1391, [123], [124]
Yang et al. [125] ICMEW 2019 SK OP [65] self-collection
Chan et al. [103] ICCV 2019 SK OP [65] EverybodyDance [45]
GAN DwNet [52] BMVC 2019 DS DP [81] Fashion [52]
Naoya et al. [[104] ECCVW 2020 SK OP [65] Human3.6M [40]
Yoon et al. [[100] CVPR 2021 DS DP [81] 3D-people [43]
SGW-GAN [106] ArXiv 2021 SK OP [65] MS-ASL [55]
DreamPose [118] ICCV 2023 DS DP [81] Fashion [52]
LEO [126] ArXiv 2023 OF LIA [127] 1128]-[130]
DreaMoving [131]] ArXiv 2023 SK, DP DwP [[117|], ZoeDepth [132] self-collection
DisCo [48] CVPR 2024 BG, SK G-SAM [133]], OP [65] TikTok [46]
Animate Anyone [8] CVPR 2024 SK DP [81],0P [65] self-collection
MagicPose [29] ICML 2024 SK OP [65] TikTok [46]
MagicAnimate [119] CVPR 2024 DS DP [81] TikTok [46], TED-talks [64]
Diffusion Champ [134] ArXiv 2024 DP, NM, SM, SK SMPL [[121] self-collection
PoseAnimate [135] ArXiv 2024 SK OP [65] Training-Free
Liu et al. [[125] ArXiv 2024 SK, BG DwP [117]], HM [136] self-collection
MotionFollower ArXiv 2024 SK DwP [117] self-collection
Human4DiT [120] ArXiv 2024 MS SMPL [121]] self-collection
VividPose [98] ArXiv 2024 SK, MS DwP [[117], SMPL-X [137] TikTok [46]
UniAnimate [[112] ArXiv 2024 SK DwP [117] TikTok [46|, Fashion [52]
FYP v2 [138] ArXiv 2024 SK, DP, OF DwP [117], DA [80], MF [75] self-collection
MimicMotion [111] ArXiv 2024 SK DwP [117] self-collection

TABLE IV: List of Methods Focusing on Pose Guided Human Video Generation. SP, DP, OP and DwP represent StackPose [69],
DensePose [81], OpenPose [65] and DwPose [117]. G-SAM, DA, HM and MF represent Grounded-SAM [133]], Depth
Anything [80], Human Matting [136] and MMFlow [75]. SK, DS, MS, and OF represent skeleton pose, dense pose, mesh,
and optical flow. BG, NM, and SM represent the background, normal map, and semantic map.

stability. Liu er al. [[125]) separates the motion representations
of the foreground and background, animating human figures
with pose-based motion while modeling background motion
using sparse tracking points to capture natural interactions
between the figure’s activity and environmental changes.

To tackle the occlusion issues, Follow-Your-Pose v2 [138]]
addresses occlusions in multi-character animation with a depth
guider, and improves character appearance learning with a
reference pose guider. VividPose [98] introduces depth and
mesh information, particularly in conjunction with the SMPL-
X [137] model, which helps the system to better handle occlu-
sions and complex movements that are common in human pose
sequences. DreaMoving [131] integrates depth information
and skeleton pose, helping the model to understand the spatial
relationships between different parts of the body and the
environment. The depth information is useful for handling
occlusions as it allows the model to determine which body
parts are in front of or behind others.

VII. CHALLENGES

In this section, we summarize the key challenges in the
human video generation task, discuss the special challenges
existing in the models guided by the particular modality, and
explain the common problems faced by this task and related
video generation tasks. Representative challenges include:

1) Occlusion Issue. In the collected videos, overlapping
body parts or multiple people occlusion is common, but
most models cannot handle the problem of mutual influence
well [98]], [[138].

2) Body Deformation. Ensuring that generated video fea-
tures such as body shape, face, and hands adhere to typical

human characteristics is a significant obstacle in this task. One
common example of this issue is the occurrence of malformed
hands [|139]].

3) Appearance Inconsistency. The generation of human
videos also requires that the various features of the human
appearance, including face, body, clothing, accessories, etc.,
be consistent in the generated videos. However, most models
cannot achieve utterly satisfactory consistency.

4) Background Influence. When generating videos with
the human body in the foreground, the consistency of the
background and the harmony with the foreground human body
is also a major challenge. Poor background control will affect
the quality of human generation and bring additional jitter and
distortion.

5) Temporal Inalignment. In models guided by tempo-
ral signals, especially the audio-to-human video generation
models, the synchronization of lips and voice is a significant
challenge to improving the quality.

6) Unnatural Pose. Current generated human video often
suffers from the unnatural pose problem. The specific mani-
festations of this problem include the inconsistency between
the generated video and the inputted guided pose, as well as
the naturalness of the movements in the generated videos.

In addition to the representative challenges mentioned
above, in text- or audio-driven models, due to the one-to-many
mapping nature in the dataset, meaning that a single input text
or audio can correspond to several valid outputs. As a result,
attempting to directly match the input with a single ’correct’
gesture can lead to an unreliable and biased association. This
approach hinders the model’s ability to capture and learn the
variations present within the data [3].

It should be noted that since human video generation



is essentially a branch of video generation, the efficiency
challenges brought by the common use of diffusion models,
the challenges of multi-view generation, and the challenges of
high-resolution generation still have a significant impact on
the generation quality.

VIII. CONCLUSION AND DISCUSSION
A. Conclusion

In this survey, we provide a comprehensive overview of
recent advancements in human video generation. Despite the
rapid progress in this field, significant challenges remain
that warrant further exploration. We summarize available
dataset resources and commonly used evaluation metrics.
Subsequently, we classify the existing researches based on
conditional signals (i.e. text, audio and pose) and discuss each
category in detail.

B. Discussion

In this section, we aim to discuss in detail the factors
influencing the quality of human video generation, excluding
dataset scale. To this end, we will focus on three aspects:
generation paradigm, backbone, and condition pose.

o Generation Paradigm. Compared to pose-driven meth-
ods (which can be regarded as one-stage methods), text
and audio-driven methods can be divided into one-stage
and two-stage approaches. The former directly uses input
text or audio as prompts to guide human video generation,
while the latter generates poses from the input text or
audio and then uses these generated poses as signals
to guide human video generation. The introduction of
various pose types, such as skeleton poses, in two-stage
methods, provides additional geometric and semantic
information, enhancing the accuracy and realism of video
motions. This makes two-stage methods significantly
more effective than one-stage methods, albeit at the cost
of some efficiency.

« Backbone. Diffusion models, such as SD and SVD, are
widely used in various generative tasks, including human
video generation, due to their superior performance and
diversity. However, unlike GANs, which generate sam-
ples in a single sampling step, diffusion models require
multiple sampling steps, thereby increasing the time cost
for training and inference.

o Condition Pose. Different types of conditional poses
work because they provide complementary information.
The most common skeleton pose accurately describes
the spatial information of the human body in the frame
and the relative positions of body parts. However, it
captures discrete pose changes rather than continuous
motion details, providing limited temporal coherence. In
contrast, optical flow inherently includes temporal infor-
mation, capturing changes between consecutive frames
and providing continuous motion trajectories in the fea-
ture space. This allows the model to generate videos
with smooth transitions between frames, avoiding jumps
or discontinuities. Moreover, the skeleton pose does not
include background and detail modeling, whereas depth

maps capture distance information between human body
and the background, along with surface details and depth
changes. 3D meshes offer detailed geometric structures
of object surfaces that skeleton poses lack. In sum-
mary, different types of poses provide complementary
spatiotemporal information, and there is no unified pose
type that fulfills all requirements. Different scenarios and
problems may require different poses.

C. Future Work

We outline several promising future directions from various
perspectives, aiming to inspire new breakthroughs in human
video generation research.

o Large-Scale High-Quality Human Video Datasets. Ex-
isting public datasets, including those in the fields of
human action and human dance, are relatively small in
scale. Collecting high-quality human video datasets is
both challenging and expensive. However, a large-scale,
high-quality human video dataset is crucial for developing
a foundational model for human video generation.

o Long Video Generation. Current human video genera-
tion methods typically produce videos lasting only several
seconds. Generating videos that extend to several minutes
or even hours presents a significant challenge. Therefore,
future research should focus on the generation of long-
duration human videos.

« Photorealistic Video Generation. As previously men-
tioned, challenges such as occlusion, body deformation,
pose unnaturalness, and appearance inconsistency can
result in low-quality video generation. Resolving these
visual and aesthetic issues to ensure that the generated
human body movements follow real-world physical laws
is a major challenge. Creating videos with highly realistic
visual effects remains a difficult task.

« Human Video Diffusion Efficiency. Diffusion models
have become the backbone for human video generation
tasks. However, the heavy training costs and deployment
requirements of video diffusion models pose significant
challenges. Reducing training costs and scaling down
model size are crucial issues. Therefore, exploring the
efficiency of video diffusion models is a valuable direc-
tion for future research.

o Fine-Grained Controllability. Existing multimodal-
driven human video generation methods, even when
incorporating additional, conditional signals such as 3D
mesh and depth map alongside skeleton pose, still lack
fine-grained control over specific body parts, particularly
hands, and face. Future research could focus on achieving
fine-grained, controllable generation of these detailed
human body regions.

« Interactivity. In addition to exploring fine-grained con-
trollability, future work could further investigate interac-
tive controllability. This would allow users to manipulate
elements such as arm movements or facial expressions
through simple actions like clicking, ultimately generat-
ing human videos that meet user satisfaction.
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